Digits
$\{0,1,2,3,4,5,6,7,8,9\}$
Natural/Counting $(\mathbb N)$
$\{1,2,3\dots\}$
Whole
$\{0,1,2,3\dots\}$
Integers $(\mathbb Z)$
$\{ \dots -2, -1, 0, 1, 2\dots\}$
Rational $(\mathbb Q)$
$\bigg\{ {\large\frac{p}{q}}\mid p, q \in \mathbb Z, q \neq 0 \bigg\}$
Irrational
Radical or Transcendental
Transcendental Number:
- A real or complex number that is not algebraic - not a root of a non-zero polynomial equation with real coefficients such as $\pi$ and $e$
Real
$\bigg\{ x \mid x$ is any number on the number line$ \bigg\}$
Complex
$\bigg\{ a\pm bi \mid a,b\in\mathbb R, i=\sqrt{-1} \bigg\}$
For all a and b belonging to the reals
$$\forall a,b \in \mathbb R$$Is Digits closed wrt Addition?
$8 + 6 = 14 \notin Digits$, thus no
"$\subset$" is a symbol used to signify a subset
if $A \subset B$ then every element in A is also in B
Example:
Digits $\subset$ Whole
$\mathbb Z \subset \mathbb R$