Definition: A relation is any set of orderer pairs
Definition: A function is a specific relation where there is exactly one dependent variable for each independent (Vertical Line Test)
Parallel: $l_1 \parallel l_2 \to m_1 = m_2$
Perpendicular $l_1 \bot l_2 \to m_1 = \frac{-1}{m_2}$
Slope Intercept Form: $y = mx + b$
Standard Form: $Ax + By = C, \text{where } A,B \neq 0, \text{and } A,B,C \in \mathbb Z$
Point-Slope Form: $y-y_1 = m(x-x_1)$
Common Problems:
$f(x)= \begin{cases} \text{use this equation} & \text{when this condition is met} \\ \end{cases} $
$h(x)= \begin{cases} x + 1 & x\leq 0 \\ x^2 + 1 & x \gt 0 \\ \end{cases} $
y varies directly as x
$y=kx$
y varis indirectly as x
$y=\frac{k}{x}$
Correlation $\neq$ Causation
i.e. Ice Cream sales correlate with city violence, but they do not cause it because of a confounding variable, which is the heat
Correlation Coefficient: $r$
The closer $r$ is to $\pm 1$, the better the line fits the data
Linear Regression (Least Squares Method) using a calculator
$f(x) = | x |$
$g(x) = 2 |x| \to$ Vertical Stretch
$g(x) = 4 - 2 |x| \to$ Up 4 and reflected down
$g(x) = |x+3| \to$ Shift left 3
$g(x) = |3x-16| \to$ Horizontal shift and compression
Transformations¶
$\displaystyle g(x) = a[f(bx-h)]+k$
where $a$ = vertical stretch/compression
$b$ = horizontal stretch/compression
$h$ = horizontal shift
$k$ = vertical shift
Ex: $y<2x+3$