$0 < b < 1 \to$ Decay
$b > 1 \to$ Growth
Example:
$$ A(t) = P(1+\frac{r}{n})^{nt} $$$a = P$
$b = 1 + \frac{r}{b}$
$x = nt$
$(1 + \frac{r}{n}) > 1 \to$ Growth
Exponential Growth/Decay Formulas
Growth: $$ A(t) = A_0(1+r)^t$$
Decay: $$ A(t) = A_0(1-r)^t$$
Example: Snowmobile cost 4200 $. Value decreases by 10% per year. What is the value after 3 years?
$$ A(3) = 4200(1-.1)^3$$Transformation:
$$ f(x) = a(b)^{x - h} + k $$Tiger Shark length (cm) is modeled by:
$$ l = 337 - 276e^{-0.178t}$$Log of a product
$log_bm + log_bn = log_b(mn)$
Log of a quotient
$log_bm - log_bn = log_b(\frac{m}{n})$
Log of a power
$log_bm^n = n \cdot log_bm$
Change of base
$log_mn = \frac{log_bn}{log_bm}$